Energy Efficient Telemonitoring of Physiological Signals via Compressed Sensing: A Fast Algorithm and Power Consumption Evaluation

نویسندگان

  • Benyuan Liu
  • Zhilin Zhang
  • Gary Xu
  • Hongqi Fan
  • Qiang Fu
چکیده

Wireless telemonitoring of physiological signals is an important topic in eHealth. In order to reduce on-chip energy consumption and extend sensor life, recorded signals are usually compressed before transmission. In this paper, we adopt compressed sensing (CS) as a low-power compression framework, and propose a fast block sparse Bayesian learning (BSBL) algorithm to reconstruct original signals. Experiments on real-world fetal ECG signals and epilepsy EEG signals showed that the proposed algorithm has good balance between speed and data reconstruction fidelity when compared to state-of-the-art CS algorithms. Further, we implemented the CS-based compression procedure and a low-power compression procedure based on a wavelet transform in Filed Programmable Gate Array (FPGA), showing that the CS-based compression can largely save energy and other on-chip computing resources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Energy Wireless Body-Area Networks for Fetal ECG Telemonitoring via the Framework of Block Sparse Bayesian Learning

Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a low-power wireless body-area network for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing data with low power consumption. However, due to some specific characteristics of FECG recordings such as non-sparsity ...

متن کامل

Bayesian De-quantization and Data Compression for Low-Energy Physiological Signal Telemonitoring

We address the issue of applying quantized compressed sensing (CS) on low-energy telemonitoring. So far, few works studied this problem in applications where signals were only approximately sparse. We propose a two-stage data compressor based on quantized CS, where signals are compressed by compressed sensing and then the compressed measurements are quantized with only 2 bits per measurement. T...

متن کامل

Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals

In recent years, compressed sensing (CS) has emerged as an effective alternative to conventional wavelet based data compression techniques. This is due to its simple and energy-efficient data reduction procedure, which makes it suitable for resource-constrained wireless body area network (WBAN)-enabled electrocardiogram (ECG) telemonitoring applications. Both spatial and temporal correlations e...

متن کامل

A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, micr...

متن کامل

Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks

In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014